Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Polim Med ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38315071

RESUMO

BACKGROUND: One of the important formalisms of non-equilibrium thermodynamics is Peusner network thermodynamics. The description of the energy conversion in membrane processes, i.e., the conversion of the internal energy of the system into the dissipated energy and the free energy used for the work associated with the transport of solution components, allows us to describe the relationship between these energies and the thermodynamic forces acting in the membrane system. OBJECTIVES: The aim of this study was to develop a procedure to transform the Kedem-Katchalsky equations for the transport of binary electrolytic solutions across a membrane into the Kedem-Katchalsky-Peusner equations based on Peusner network thermodynamics. The conversion of electrochemical energy to free energy in the membrane system was also determined. MATERIAL AND METHODS: The nanobiocellulose biomembranes (Biofill) were the subject of the study with experimentally determined transport parameters for aqueous NaCl solutions. The research method is the Kedem-Katchalsky-Peusner formalism for binary electrolyte solutions with introduced Peusner coefficients. RESULTS: The coefficients of the L version of the membrane transport equations and the Peusner coupling coefficients were derived as functions of NaCl concentration in the membrane. Based on these coefficients, the fluxes of internal energy of the system, energy dissipated to the surroundings and free energy related to the transport of electrolyte across the membrane were calculated and presented as functions of the osmotic and electric forces on the membrane. CONCLUSIONS: The Peusner coefficients obtained from the transformations of the coefficients of the Kedem-Katchalsky formalism for the transport of electrolyte solutions through the Biofill membrane were used to calculate the coupling coefficients of the membrane processes and the dissipative energy flux. The dissipative energy flux takes the form of a quadratic form due to the thermodynamic forces on the membrane - second degree curves are obtained. Moreover, the dissipative energy flux as a function of thermodynamic forces allowed us to examine the energy conversion in transport processes in the membrane system.

2.
Int J Biol Macromol ; 258(Pt 2): 128984, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151089

RESUMO

The massive reserves of osmotic energy existing in estuary will be highly desired as promising energy source that avails to solve the problem of energy shortage and environment deterioration. The ion transport membrane is core component optimized through composite membrane heterostructure to maximize the osmotic energy harvesting but suffer from gaps and resistance increase, which limit their practical applications. Here we demonstrate mono-component heterogeneous regenerated bacterial cellulose (RBC) membranes fabricated by subtle regenerated technique through Ionic Liquids (ILs). Such membranes obtain heterogeneous nature by the difference in fiber intertwining states due to the different treatment conditions on both sides. It achieves osmotic energy conversion with maximum power density of 0.70 W·m-2at 100-fold, which provides ingenious strategy for excellent performance and low-cost osmotic energy harvesting. By minimizing pores and maximizing the surface charges, energy barriers can be lowered, ion permeable and selective transport channels for energy harvesting device can be increased, as supported by the numerical simulation. This is the first time the construction strategy for mono-component heterogeneous membrane mediated by ILs for osmotic energy harvesting is proposed, which averts gaps between the layers of different materials effectively and provides theoretical guidance for subsequent in-depth research on mono-component ion-selective heterogeneous membrane.


Assuntos
Líquidos Iônicos , Osmose , Celulose , Fenômenos Físicos , Membranas
3.
Mikrochim Acta ; 190(11): 447, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864774

RESUMO

Flexible silver substrates were made by in situ reduction of silver nanoparticles in bacterial cellulose membranes using the unique advantage of dopamine. Subsequently, we modified the substrate with 4-mercaptophenol (4-MP), a molecule capable of specifically recognizing ClO-, and its corresponding SERS signal changes with the concentration of hypochlorite, thus allowing the quantitative detection of ClO- content. The method showed a negative linear correlation (R2 = 0.9567) with the SERS intensity at 1077 cm-1 over the concentration range 0.5-100 µM, and the detection limit was 0.15 µM. The RSD of the SERS intensity at 1077 cm-1 under five batches was 4.2%, which proved the good reproducibility of P-BCM-Ag NP-MP. Finally, the P-BCM-Ag NPs were used for the detection of hypochlorite in cell contents, artificial urine, and clinical serum samples, utilizing spike experiments in all three environments. The recoveries were in the range 90-110% indicating the accuracy of the method for the detection of hypochlorite and validating the promising application of this assay for practical detection in intricate biological samples.


Assuntos
Celulose , Nanopartículas Metálicas , Dopamina , Ácido Hipocloroso , Prata/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
4.
Food Chem ; 427: 136692, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37364315

RESUMO

Diarrheal shellfish toxins are considered one of the most lethal red tide algae toxins in the worldwide. In this work, we propose an Ag NPs-loaded bacterial cellulose membrane (BCM) surface-enhanced Raman scattering (SERS) sensor based on an aptamer (Apt) for the ultrasensitive detection of dinophysistoxin (DTX-1), a type of diarrheal shellfish toxin. During drying, Ag NPs can be further densified on "gel-like" BCM to form high-density SERS "hot spots". We developed the "Apt-SH@Ag NPs@BCM" SERS sensor and used the competition of DTX-1 and complementary base (Cob) in the process of base complementary pairing to achieve SERS detection of DTX-1, with a minimum detection limit of 9.5 × 10-10 mol/L. Sample assays showed DTX-1 recovery rates ranging from 95.8% and 108.2% and the detection results were comparable to those obtained by LC-MS. Therefore, this work holds great potential for detecting of toxic substances in shellfish products, especially for the oyster (portuguese oyster) and mussel (blue mussel).


Assuntos
Celulose , Nanopartículas Metálicas , Humanos , Prata/química , Nanopartículas Metálicas/química , Toxinas Marinhas/toxicidade , Frutos do Mar/análise , Diarreia , Análise Espectral Raman/métodos
5.
Entropy (Basel) ; 25(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36673144

RESUMO

We evaluated the transport properties of a bacterial cellulose (BC) membrane for aqueous ethanol solutions. Using the Rr version of the Kedem-Katchalsky-Peusner formalism (KKP) for the concentration polarization (CP) conditions of solutions, the osmotic and diffusion fluxes as well as the membrane transport parameters were determined, such as the hydraulic permeability (Lp), reflection (σ), and solute permeability (ω). We used these parameters and the Peusner (Rijr) coefficients resulting from the KKP equations to assess the transport properties of the membrane based on the calculated dependence of the concentration coefficients: the resistance, coupling, and energy conversion efficiency for aqueous ethanol solutions. The transport properties of the membrane depended on the hydrodynamic conditions of the osmotic diffusion transport. The resistance coefficients R11r, R22r, and Rdetr were positive and higher, and the R12r coefficient was negative and lower under CP conditions (higher in convective than nonconvective states). The energy conversion was evaluated and fluxes were calculated for the U-, F-, and S-energy. It was found that the energy conversion was greater and the S-energy and F-energy were lower under CP conditions. The convection effect was negative, which means that convection movements were directed vertically upwards. Understanding the membrane transport properties and mechanisms could help to develop and improve the membrane technologies and techniques used in medicine and in water and wastewater treatment processes.

6.
J Hazard Mater ; 364: 645-653, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30408766

RESUMO

The treatment of low-level radioactive wastewater is a critical and considerable challenge. Bacterial cellulose membrane (BCM) modified with ethylenediaminetetraacetic acid (EDTA) using (3-aminopropyl) triethoxysilane (APTES) as a crosslinker were used to remove Sr2+ in this work. SEM, XPS, and FTIR were used to characterize the morphology, structure, chemical shift, and functional groups of the as-prepared adsorbent. The synthesized BCM@APTES-EDTA presented a three-layer structure of membrane-net-membrane with nano-sized fibers (<100 nm). The adsorption of Sr2+ onto BCM@APTES-EDTA was investigated as a function of contact time and initial concentration of Sr2+. Results showed that the adsorption of Sr2+ followed the pseudo second-order kinetic model (R2 = 0.999), and fitted well with the Langmuir isotherm model (R2 = 0.996). The maximum adsorption capacity was calculated to be 44.86 mg g-1, which was comparable to other adsorbents. Additionally, the mechanism of Sr2+ adsorbed by the as-prepared adsorbent was studied through FTIR and XPS analysis, which indicated that the tertiary amines and carboxylate from grafted EDTA participated in the adsorption of Sr2+.


Assuntos
Celulose/química , Quelantes/química , Ácido Edético/química , Nanofibras/química , Estrôncio/química , Poluentes Químicos da Água/química , Acetobacter , Adsorção , Membranas Artificiais , Propilaminas/química , Silanos/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
7.
J Photochem Photobiol B ; 182: 1-8, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29573633

RESUMO

The present study aims to assess the influence of Aluminum-Gallium-Indium-Phosphide laser (AlGaInP laser, λ = 660 nm), whether or not in association with the application of a membrane of bacterial cellulose (Nexfill™), during recovery from induced second-degree burns at the dorsum of Wistar rats. (Rattus norvegicus, Wistar). Forty-eight animals have been distributed into four groups: Control (burns remained untreated), Group I (laser-treated), Group II (treated with Nexfill), and Group III (laser + Nexfill™). In addition to a morphological analysis, immunohistochemical analysis has been performed for type I collagen, type III collagen, fibronectin, and laminin. The Fisher's Test was used to assess differences among groups (p < 0,05). A larger amount of collagen type III was observed in Control, Group II and Group III when compared with Group I (p < 0,05). Group I and Group III have shown a greater collagen deposition when compared with Group II (p < 0,05), but the amount of collagen was similar in Group I, Group III, and Control. Group III has shown larger fibronectin amounts in comparison with Group II (p < 0,05). As regards laminin, Group I has shown a predominant discontinuity pattern on the basal lamina in comparison with Control, Group II, and Group III (p < 0,05). It is concluded that in this current study the laser when used alone (Group I) hasn't influenced collagen deposition neither has it acted on fiber pattern (fibril and/or reticular). Moreover, laser application hasn't accelerated the repair of wounds caused by inflicted second-degree burns.


Assuntos
Queimaduras/terapia , Celulose , Matriz Extracelular/efeitos da radiação , Lasers , Cicatrização/efeitos dos fármacos , Cicatrização/efeitos da radiação , Animais , Bactérias/metabolismo , Celulose/farmacologia , Celulose/uso terapêutico , Colágeno/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fibronectinas/metabolismo , Imuno-Histoquímica , Laminina/metabolismo , Masculino , Membranas Artificiais , Ratos , Ratos Wistar
8.
Int J Mol Sci ; 18(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068426

RESUMO

Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs) were evaluated by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), and using wet tensile strength measurements. In addition, in vitro cell studies were conducted in order to confirm the cytocompatibility of EI-BCMs. Cell viabilities of NIH3T3 cells on 100k and 300k EI-BCMs (100 kGy and 300 kGy irradiated BC membranes) were significantly greater than on NI-BCMs after 3 and 7 days (p < 0.05). Bone regeneration by EI-BCMs and their biodegradabilities were also evaluated using in vivo rat calvarial defect models for 4 and 8 weeks. Histometric results showed 100k EI-BCMs exhibited significantly larger new bone area (NBA; %) than 300k EI-BCMs at 8 weeks after implantation (p < 0.05). Mechanical, chemical, and biological analyses showed EI-BCMs effectively interacted with cells and promoted bone regeneration.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Celulose/efeitos da radiação , Regeneração Tecidual Guiada/métodos , Animais , Bactérias/química , Sobrevivência Celular , Elétrons , Masculino , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Células NIH 3T3 , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
9.
Materials (Basel) ; 10(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862689

RESUMO

Bacterial cellulose (BC) is a natural polysaccharide produced by some bacteria, and consists of a linear polymer linked by ß-(1,4) glycosidic bonds. BC has been developed as a material for tissue regeneration purposes. This study was conducted to evaluate the efficacy of resorbable electron beam irradiated BC membranes (EI-BCMs) for guided bone regeneration (GBR). The electron beam irradiation (EI) was introduced to control the biodegradability of BC for dental applications. EI-BCMs had higher porosity than collagen membranes (CMs), and had similar wet tensile strengths to CMs. NIH3T3 cell adhesion and proliferation on EI-BCMs were not significantly different from those on CMs (p > 0.05). Micro-computed tomography (µCT) and histometric analysis in peri-implant dehiscence defects of beagle dogs showed that EI-BCMs were non-significantly different from CMs in terms of new bone area (NBA; %), remaining bone substitute volume (RBA; %) and bone-to-implant contact (BIC; %) (p > 0.05). These results suggest resorbable EI-BCMs can be used as an alternative biomaterial for bone tissue regeneration.

10.
J Biol Phys ; 43(2): 225-238, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28500449

RESUMO

We analyzed the transport of KCl solutions through the bacterial cellulose membrane and concentration boundary layers (CBLs) near membrane with pressure differences on the membrane. The membrane was located in horizontal-plane between two chambers with different KCL solutions. The membrane was located in horizontal-plane between two chambers with different KCL solutions. As results from the elaborated model, gradient of KCL concentration in CBLs is maximal at membrane surfaces in the case when pressure difference on the membrane equals zero. The amplitude of this maximum decreases with time of CBLs buildup. Application of mechanical pressure gradient in the direction of gradient of osmotic pressure on the membrane causes a shift of this maximum into the chamber with lower concentration. In turn, application of mechanical pressure gradient directed opposite to the gradient of osmotic pressure causes the appearance of maximum of concentration gradient in chamber with higher concentration. Besides, the increase of time of CBLs buildup entails a decrease of peak height and shift of this peak further from the membrane. Similar behavior is observed for distribution of energy dissipation in CBLs but for pressure difference on the membrane equal to zero the maximum of energy dissipation is observed in the chamber with lower concentration. We also measured time characteristics of voltage in the membrane system with greater KCl concentrations over the membrane. We can state that mechanical pressure difference on the membrane can suppress or strengthen hydrodynamic instabilities visible as pulsations of measured voltage. Additionally, time of appearance of voltage pulsations, its amplitude, and frequency depend on mechanical pressure differences on the membrane and initial quotient of KCl concentrations in chambers.


Assuntos
Membranas Artificiais , Pressão , Cloreto de Potássio/química
11.
J Biol Phys ; 42(3): 383-98, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27060081

RESUMO

The mechanical pressure difference across the bacterial cellulose membrane located in a horizontal plane causes asymmetry of voltage measured between electrodes immersed in KCl solutions symmetrically on both sides of the membrane. For all measurements, KCl solution with lower concentration was above the membrane. In configuration of the analyzed membrane system, the concentration boundary layers (CBLs) are created only by molecular diffusion. The voltages measured in the membrane system in concentration polarization conditions were compared with suitable voltages obtained from the model of diffusion through CBLs and ion transport through the membrane. An increase of difference of mechanical pressure across the membrane directed as a difference of osmotic pressure always causes a decrease of voltage between the electrodes in the membrane system. In turn, for mechanical pressure difference across the membrane directed in an opposite direction to the difference of osmotic pressure, a peak in the voltage as a function of mechanical pressure difference is observed. An increase of osmotic pressure difference across the membrane at the initial moment causes an increase of the maximal value of the observed peak and a shift of this peak position in the direction of higher values of the mechanical pressure differences across the membrane.


Assuntos
Fenômenos Eletrofisiológicos , Fenômenos Mecânicos , Membranas Artificiais , Pressão , Celulose/química , Modelos Biológicos , Potássio/metabolismo
12.
Neurol Res ; 38(1): 25-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26905484

RESUMO

INTRODUCTION: Cerebrospinal fluid (CSF) leaks are a common complication after cranial and spinal surgery and are associated with increased morbidity. Despite continuous research in this field, this problem is far from solved. In this paper, we describe the construction and testing of a bacterial cellulose (BC) membrane as a new dural patch. MATERIALS AND METHODS: The synthesis of BC was performed using Gluconacetobacter hansenii (ATCC 23769) and films were sterilized by autoclaving. The membranes were seeded with human dural fibroblasts. Growth, shape, and cell viability were assessed after 4 weeks. RESULTS: Normally shaped fibroblasts were seen on the BC grafts; confocal microscopy showed cells inside the structure of the mesh. Both viable and nonviable cells were present. Cellular attachment and viability were confirmed by replating of the membranes. DISCUSSION: BC membranes are used in clinical practice to improve skin healing. In the presence of water, they form an elastic, nontoxic, and resistant biogel that can accommodate collagen and growth factors within their structure, thus BC is a good candidate for dural graft construction.


Assuntos
Membrana Celular/metabolismo , Celulose/metabolismo , Dura-Máter/metabolismo , Fibroblastos/fisiologia , Membrana Celular/ultraestrutura , Sobrevivência Celular , Celulose/ultraestrutura , Vazamento de Líquido Cefalorraquidiano/patologia , Dura-Máter/efeitos da radiação , Dura-Máter/ultraestrutura , Fibroblastos/ultraestrutura , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Técnicas de Cultura de Órgãos , Termogravimetria , Fatores de Tempo , Vimentina/metabolismo , Raios X
13.
J Biosci Bioeng ; 120(4): 444-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25823854

RESUMO

In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application.


Assuntos
Reatores Biológicos/microbiologia , Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Módulo de Elasticidade , Água/análise , Água/metabolismo
14.
J Adv Prosthodont ; 7(6): 484-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26816579

RESUMO

PURPOSE: This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS: BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (α<.05). RESULTS: BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION: BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.

15.
Arq. bras. med. vet. zootec ; 64(4): 873-880, Aug. 2012. ilus, tab
Artigo em Português | LILACS | ID: lil-647687

RESUMO

A fim de avaliar a resposta biológica da hidroxiapatita sintética (HAP-91) nos alvéolos de felinos domésticos, este biomaterial foi implantado após extração do terceiro pré-molar inferior direito em 12 gatos e mantida por meio de uma membrana de celulose bacteriana. No lado esquerdo, os alvéolos foram apenas recobertos com a membrana de celulose bacteriana, formando o grupo-controle. Observou-se, durante a avaliação clínica, que todos os animais voltaram a comer normalmente ração úmida, sem apresentarem sinais de dor ou desconforto após a recuperação anestésica. A cicatrização da ferida cirúrgica ocorreu de forma satisfatória, sendo que a membrana de celulose bacteriana evitou a saída precoce da hidroxiapatita. Radiograficamente, aos 50 dias, todos os animais apresentaram radiopacidade óssea homogênea em ambos os lados. À análise histomorfométrica, observou-se adiantamento do processo de reparo do osso alveolar nos oito primeiros dias do grupo-tratado quando comparado ao grupo-controle, bem como atraso aos 30 dias, porém, aos 50 dias, ambos os grupos apresentavam porcentagem de tecido ósseo semelhante e morfologicamente normal. Os resultados sugerem que a hidroxiapatita é biocompatível, integra-se ao tecido ósseo alveolar e pode ser utilizada em felinos.


The biocompatibility of a material depends on its characteristics, as well as the species and the environment recipient. In order to evaluate the biological response of the synthetic hydroxyapatite (HAP-91) in feline dental alveoli, it was implanted in the right inferior third premolar after extraction in 12 cats and maintained through a bacterial cellulose membrane. On the left side the alveoli was covered with a bacterial cellulose membrane (control group). During clinical evaluations it was observed that the animals started to eat after the anesthetic recovery time, without clinical signs of pain. There was a satisfactory cicatrization of the surgical wound and the bacterial cellulose membrane aided in repairing the gum, avoiding the loss of the hydroxyapatite. Radiographs taken 50 days post surgery presented homogeneous bone radiopacity on both sides. The histological and histomorfometrical analysis showed a positive progress of the alveolar repair in the first 8 days in the treated group when compared to the control group and a delay at 30 days, however at 50 days both presented a similar and morphologically normal percentage of bone tissue. These findings suggest that HAP-91 is biocompatible and integrates into the feline alveolar bone.


Assuntos
Animais , Gatos , Durapatita/análise , Durapatita , Gatos/metabolismo , Gatos/microbiologia , Alvéolo Dental , Celulose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA